Package: lvmcomp 1.4.0

lvmcomp: Stochastic EM Algorithms for Latent Variable Models with a High-Dimensional Latent Space

Provides stochastic EM algorithms for latent variable models with a high-dimensional latent space. So far, we provide functions for confirmatory item factor analysis based on the multidimensional two parameter logistic (M2PL) model and the generalized multidimensional partial credit model. These functions scale well for problems with many latent traits (e.g., thirty or even more) and are virtually tuning-free. The computation is facilitated by multiprocessing 'OpenMP' API. For more information, please refer to: Zhang, S., Chen, Y., & Liu, Y. (2018). An Improved Stochastic EM Algorithm for Large-scale Full-information Item Factor Analysis. British Journal of Mathematical and Statistical Psychology. <doi:10.1111/bmsp.12153>.

Authors:Siliang Zhang [aut, cre], Yunxiao Chen [aut], Jorge Nocedal [cph], Naoaki Okazaki [cph]

lvmcomp_1.4.0.tar.gz
lvmcomp_1.4.0.zip(r-4.5)lvmcomp_1.4.0.zip(r-4.4)lvmcomp_1.4.0.zip(r-4.3)
lvmcomp_1.4.0.tgz(r-4.5-x86_64)lvmcomp_1.4.0.tgz(r-4.5-arm64)lvmcomp_1.4.0.tgz(r-4.4-x86_64)lvmcomp_1.4.0.tgz(r-4.4-arm64)lvmcomp_1.4.0.tgz(r-4.3-x86_64)lvmcomp_1.4.0.tgz(r-4.3-arm64)
lvmcomp_1.4.0.tar.gz(r-4.5-noble)lvmcomp_1.4.0.tar.gz(r-4.4-noble)
lvmcomp_1.4.0.tgz(r-4.4-emscripten)lvmcomp_1.4.0.tgz(r-4.3-emscripten)
lvmcomp.pdf |lvmcomp.html
lvmcomp/json (API)

# Install 'lvmcomp' in R:
install.packages('lvmcomp', repos = c('https://slzhang-fd.r-universe.dev', 'https://cloud.r-project.org'))

Bug tracker:https://github.com/slzhang-fd/lvmcomp/issues

Uses libs:
  • openblas– Optimized BLAS
  • c++– GNU Standard C++ Library v3
  • openmp– GCC OpenMP (GOMP) support library
Datasets:
  • data_sim_mirt - Simulated dataset for multivariate item response theory model.
  • data_sim_pcirt - Simulated dataset for generalized partial credit model.

On CRAN:

Conda:

openblascppopenmp

3.30 score 4 stars 2 scripts 152 downloads 24 exports 4 dependencies

Last updated 4 years agofrom:7596de328e. Checks:1 OK, 11 WARNING. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKMar 15 2025
R-4.5-win-x86_64WARNINGMar 15 2025
R-4.5-mac-x86_64WARNINGMar 15 2025
R-4.5-mac-aarch64WARNINGMar 15 2025
R-4.5-linux-x86_64WARNINGMar 15 2025
R-4.4-win-x86_64WARNINGMar 15 2025
R-4.4-mac-x86_64WARNINGMar 15 2025
R-4.4-mac-aarch64WARNINGMar 15 2025
R-4.4-linux-x86_64WARNINGMar 15 2025
R-4.3-win-x86_64WARNINGMar 15 2025
R-4.3-mac-x86_64WARNINGMar 15 2025
R-4.3-mac-aarch64WARNINGMar 15 2025

Exports:bfgs_updatecalcu_sigma_cmle_cppcalcu_sigma_cmle_cpp1log_sum_exp2MHRM_confmy_rand_unifoakesobj_detobj_func_cppsa_mirt_armasa_mirt_confsa_mirt_conf_no_avesa_mirt_conf1sa_penmirtsa_penmirt1stem_initStEM_mirtstem_mirtcStEM_pcirtstem_simutest_derivtest_rtest_r1update_sigma_one_step2

Dependencies:codalatticeRcppRcppArmadillo